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Use these ideas to understand full 2d CFTs!
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(i) VOA v | 3d TFT Zc
(ii) Modular functor BI,
(iii) Field content I € Rep(V ® V)

(iv) Correlators Cory € Bl%‘,(:@\; F®n)

Theorem[FRS02]:
For semisimple/rational chiral CFTs, surface defects in the 3d TFTs
of [RT91] constructed from Rep(V) give all possible full CFTs.
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(ii) Modular functor BI,
(iii) Field content I € Rep(V ® V)
(iv) Correlators Cory € Bli‘,(:@\; F®n)
Theorem[FRS02]:

For semisimple/rational chiral CFTs, surface defects in the 3d TFTs
of [RT91] constructed from Rep(V) give all possible full CFTs.

Goal: Use surface defects in the 3d TFTs of [DGGPR22] to obtain
full CFTs in the non-semisimple/logarithmic setting.
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Chiral modular functors from non-semisimple TFTs

Theorem [H., Runkel]

For C a not necessarily semisimple modular tensor category, the 3d
TFT Z¢ of [DGGPR22] induces a symmetric monoidal 2-functor:

Blé: Bord§+e,2,1 — Lexy (finite version of @atk)
O —c
Z
&H ((X, Y,Z)»—>Zc< ))
X* Y*

2
@ s ( (T?) Mzcm))

Remark: Together with [DGGPR23], this provides a 3d construction
of Lyubashenko’s modular functor [Lyu95].
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From now on: Ble := BIf o (/—\)
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Full CFTs from surface defects

Theorem [H., Runkel]

Every surface defect A in the 3d TFT Z¢, satisfying some technical

assumptions, induces a braided monoidal 2-natural transformation:
Ay
Bordgﬁrs’m ﬂCor“‘ [,eX]k.

~_ v “

Blc

This amounts to:
1. Left exact functors Corp: C¥™() — Vecty;

2. Natural transformations Cors: Cory, ®y Corffr = Bl (X);

+ compatibility conditions for gluing surfaces and with mapping class

group actions;

ot
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Construction of Cor:

For S a 1- or 2-manifold get Corg via the “connecting manifold”:
Mg := S x [-1,1]/ ~ with (p,t) ~ (p,—t) for pec IS
with A-labelled defect S at S x {0}:

l-morphism components: (Note: oMp =T')
I ~ Mrp — Corp(—): 8@ _, Vecty
X
— — X — ZC 6
@ ( \1/ ) )
A A
A L
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X A x
\ * *
A Y Y Y Y

Cor} (X) @y Corl{(YRY) — S BRE)(YRY, X)
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Construction of Cor:

2-morphism components:

_d

Example X' : O T I

A At = (cor§>(y®7,x)
Corf (X) @ Corg, (Y RY) — 2200,
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Diagonal CFT

Example: Transparent surface defect A = 1:

(b.c’s and top. defects are labelled with objects in C)

e Boundary fields: Fy, , 2 m" ®n € C ~ Rep(V)

e Bulk fields: Fg1 = [ X* K X € CKC ~ Rep(V @ V)
e Boundary states <> Characters

e Algebra of defect operators & Grx(C)

This agrees with the results of [FGSS18]!
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Outlook:

o Calculations for non-trivial surface defects obtained via
orbifolding as in [FRS02; CRS19];

o Explicit calculations for C = SF or C = Rep(uq(sl2));

o Construction of more general surface defects for Z¢ using pivotal
module categories [FS21];

¢ Classification of full CFTs;

o Relation to other approaches, in particular the string net [FSY23]
and the operadic one [Woi25];

o Relation to skein theory with defects [BJ25];

¢ Relation to non-invertible symmetries in non-semisimple lattice
models [DHY?25];
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Chiral modular functors from non-semisimple TFTs
Our main technical contribution to this theorem is the following result
on the behaviour of Bl} under gluing:

Proposition

Let X be a (possibly connected) surface with at least one incoming and
outgoing boundary component, and let X be the surface obtained
from gluing these boundaries. Then there is a natural isomorphism

Xec
BR(Zw = §  BRE)(X.X),

induced by a 3-dimensional bordism.



Chiral modular functors from non-semisimple TFTs

Locally:

glue along I’
2 —
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