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Motivation

“Symmetry topological field theory framework”

Idea: Generalised symmetries of d-dim QFT are encoded in
(d + 1)-dim TFT.

d-dim QFT

(d + 1)-dim TFT

topological
boundary condition

d-dim QFT
∼=

Use these ideas to understand full 2d CFTs!
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Motivation

full 2d CFT

3d TFT

top. b.c.

V

ZC

surface defect

ZC

V

fold/unfold

Full CFT: (i) VOA V
(ii) Modular functor BlχV
(iii) Field content F ∈ Rep(V ⊗ V)
(iv) Correlators CorΣ ∈ BlχV(xΣ;F⊗n)

Theorem[FRS02]:
For semisimple/rational chiral CFTs, surface defects in the 3d TFTs
of [RT91] constructed from Rep(V) give all possible full CFTs.

Goal: Use surface defects in the 3d TFTs of [DGGPR22] to obtain
full CFTs in the non-semisimple/logarithmic setting.
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Modular functors from
non-semisimple TFTs



Chiral modular functors from non-semisimple TFTs

Theorem [H., Runkel]

For C a not necessarily semisimple modular tensor category, the 3d
TFT ZC of [DGGPR22] induces a symmetric monoidal 2-functor:

BlχC : Bordχ
2+ε,2,1 −→ Lexk (finite version of pCatk)

7−→ C

7−→

(
(X ,Y ,Z) 7→ ZC

( Z

X∗ Y∗

))

S→ 7−→
(

ZC(T2)
ZC((T2×I)S)−−−−−−−−→ ZC(T2)

)
...

Remark: Together with [DGGPR23], this provides a 3d construction
of Lyubashenko’s modular functor [Lyu95].
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Full modular functors from non-semisimple TFTs

Definition

/Lemma

There is an open-closed bordism 2-category.

, and a symmetric
monoidal 2-functor:

y(−) :

Bordoc
2+ε,2,1

−→ Bordχ
2+ε,2,1

7−→

7−→

7−→

...

From now on: BlC := BlχC ◦ y(−)

4
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Full CFTs from surface defects

Theorem [H., Runkel]

Every surface defect A in the 3d TFT ZC , satisfying some technical
assumptions, induces a braided monoidal 2-natural transformation:

Bordoc
2+ε,2,1 Lexk.

∆k

BlC

CorA
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Construction of Cor:

[FRS02]: For Σ a 2-manifold get CorA
Σ via the “connecting bordism”:

MΣ := Σ × [−1, 1]/ ∼ with (p, t) ∼ (p,−t) for p ∈ ∂phΣ

with A-labelled surface defect Σ at Σ × {0}.

1-morphism components: (Note: ∂MΓ = xΓ)

Γ  MΓ −→ CorA
Γ (−) : C�π0(xΓ ) → Vectk

 

A

−→

(
X 7→ ZC

( X

A

))

 

A

−→

(
(Y ,Y ) 7→ ZC

( YY

A

))

6
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Construction of Cor:

2-morphism components:

Example Σ : −−−−−−→

“ ”

X

A Y∗Y∗

A X

Y∗ Y∗
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Y∗Y∗

−−−−−−−−−−−−−−−−−−→
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Y∗ Y∗
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I (X)⊗k CorA †

S1 (Y �Y )

(
CorA

Σ

)
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Diagonal CFT

Example: Transparent surface defect A = 1:

(b.c.’s and top. defects are labelled with objects in C)

• Boundary fields: FIm,n
∼= m∗ ⊗ n ∈ C ' Rep(V)

• Bulk fields: FS1 ∼=
∫ X∈C X∗ �X ∈ C � C ' Rep(V ⊗ V)

• Boundary states ↔ Characters

• Algebra of defect operators ∼= Grk(C)

This agrees with the results of [FGSS18]!
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Outlook:

• Calculations for non-trivial surface defects obtained via
orbifolding as in [FRS02; CRS19];

• Explicit calculations for C = SF or C = Rep(uq(sl2));
• Construction of more general surface defects for ZC using pivotal

module categories [FS21];
• Classification of full CFTs;
• Relation to other approaches, in particular the string net [FSY23]

and the operadic one [Woi25];
• Relation to skein theory with defects [BJ25];
• Relation to non-invertible symmetries in non-semisimple lattice

models [DHY25];
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Chiral modular functors from non-semisimple TFTs

Our main technical contribution to this theorem is the following result
on the behaviour of BlχC under gluing:

Proposition

Let Σ be a (possibly connected) surface with at least one incoming and
outgoing boundary component, and let Σgl be the surface obtained
from gluing these boundaries. Then there is a natural isomorphism

BlχC(Σgl) ∼=
∮ X∈C

BlχC(Σ)(X ,X).

induced by a 3-dimensional bordism.
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Locally:

Σ2 Σ1

Γ Γ

Bordχ
2+ε,2,1

Σ2 tΓ Σ1

Σ2 Σ1

Bordχ
3,2(C)

X X

X

glue along Γ
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