TFT construction of CFT correlators beyond semisimplicity

Aaron Hofer joint work with Ingo Runkel (partially based on [2405.18038])

Max Planck Institute for Mathematics Bonn

CFT: Algebraic, Topological and Probabilistic approaches in Conformal Field Theory Institute Pascal – Orsay October 08, 2025

"Symmetry topological field theory framework"

"Symmetry topological field theory framework"

Idea: Generalised symmetries of d-dim QFT are encoded in (d+1)-dim TFT.

"Symmetry topological field theory framework"

Idea: Generalised symmetries of d-dim QFT are encoded in (d+1)-dim TFT.

"Symmetry topological field theory framework"

Idea: Generalised symmetries of d-dim QFT are encoded in (d+1)-dim TFT.

Use these ideas to understand full 2d CFTs!

Chiral CFT

Chiral CFT: (i) VOA ${\cal V}$

Chiral CFT: (i) VOA $\mathcal V$

(ii) Modular functor $\mathrm{Bl}^\chi_{\mathcal{V}}$

- (i) VOA \mathcal{V}
 - (ii) Modular functor $\mathrm{Bl}^\chi_{\mathcal{V}}$

- (i) VOA \mathcal{V}
- (ii) Modular functor $\mathrm{Bl}^\chi_\mathcal{V}$
- (iii) Field content $\mathbb{F} \in \text{Rep}(\mathcal{V} \otimes \overline{\mathcal{V}})$

- (i) VOA \mathcal{V}
- (ii) Modular functor $\mathrm{Bl}_{\mathcal{V}}^{\chi}$
- (iii) Field content $\mathbb{F} \in \operatorname{Rep}(\mathcal{V} \otimes \overline{\mathcal{V}})$
- (iv) Correlators $\operatorname{Cor}_{\Sigma} \in \operatorname{Bl}^{\chi}_{\mathcal{V}}(\widehat{\Sigma}; \mathbb{F}^{\otimes n})$

- (i) VOA $\mathcal{V} \xrightarrow{[RT91] \text{ for } \mathcal{C} := \text{Rep}(\mathcal{V})} 3d$ TFT $Z_{\mathcal{C}}$
- (ii) Modular functor $Bl_{\mathcal{V}}^{\chi}$
- (iii) Field content $\mathbb{F} \in \text{Rep}(\mathcal{V} \otimes \overline{\mathcal{V}})$
- (iv) Correlators $\operatorname{Cor}_{\Sigma} \in \operatorname{Bl}_{\mathcal{V}}^{\chi}(\widehat{\Sigma}; \mathbb{F}^{\otimes n})$

- (i) VOA $\mathcal{V} \xrightarrow{[RT91] \text{ for } \mathcal{C} := \text{Rep}(\mathcal{V})} 3\text{d TFT } Z_{\mathcal{C}}$
- (ii) Modular functor Bl_{ν}^{χ}
- (iii) Field content $\mathbb{F} \in \text{Rep}(\mathcal{V} \otimes \overline{\mathcal{V}})$
- (iv) Correlators $\operatorname{Cor}_{\Sigma} \in \operatorname{Bl}_{\mathcal{V}}^{\chi}(\widehat{\Sigma}; \mathbb{F}^{\otimes n})$

Full CFT:

- (i) VOA $\mathcal{V} \xrightarrow{[RT91] \text{ for } \mathcal{C} := \text{Rep}(\mathcal{V})} 3d \text{ TFT } Z_{\mathcal{C}}$
- (ii) Modular functor Bl_{ν}^{χ}
- (iii) Field content $\mathbb{F} \in \operatorname{Rep}(\mathcal{V} \otimes \overline{\mathcal{V}})$
- (iv) Correlators $\operatorname{Cor}_{\Sigma} \in \operatorname{Bl}_{\mathcal{V}}^{\chi}(\widehat{\Sigma}; \mathbb{F}^{\otimes n})$

Theorem[FRS02]:

For semisimple/rational chiral CFTs, surface defects in the 3d TFTs of [RT91] constructed from $Rep(\mathcal{V})$ give all possible full CFTs.

Full CFT:

- (i) VOA $\mathcal{V} \xrightarrow{[RT91] \text{ for } \mathcal{C} := \text{Rep}(\mathcal{V})} 3\text{d TFT } Z_{\mathcal{C}}$
- (ii) Modular functor $\mathrm{Bl}_{\mathcal{V}}^{\chi}$
- (iii) Field content $\mathbb{F} \in \text{Rep}(\mathcal{V} \otimes \overline{\mathcal{V}})$
- (iv) Correlators $\operatorname{Cor}_{\Sigma} \in \operatorname{Bl}_{\mathcal{V}}^{\chi}(\widehat{\Sigma}; \mathbb{F}^{\otimes n})$

${\bf Theorem[FRS02]:}$

For semisimple/rational chiral CFTs, surface defects in the 3d TFTs of [RT91] constructed from $Rep(\mathcal{V})$ give all possible full CFTs.

Goal: Use surface defects in the 3d TFTs of [DGGPR22] to obtain full CFTs in the non-semisimple/logarithmic setting.

Modular functors from

non-semisimple TFTs

Theorem [H., Runkel]

For C a not necessarily semisimple modular tensor category, the 3d TFT Z_C of [DGGPR22] induces a symmetric monoidal 2-functor:

$$\mathrm{Bl}^\chi_\mathcal{C}\colon \mathrm{Bord}^\chi_{2+arepsilon,2,1}\longrightarrow \mathcal{L}\mathrm{ex}_\Bbbk$$
 (finite version of $\widehat{\mathbb{C}}\mathrm{at}_\Bbbk$)

Theorem [H., Runkel]

For C a not necessarily semisimple modular tensor category, the 3d TFT Z_C of [DGGPR22] induces a symmetric monoidal 2-functor:

Theorem [H., Runkel]

For C a not necessarily semisimple modular tensor category, the 3d TFT Z_C of [DGGPR22] induces a symmetric monoidal 2-functor:

$$\mathrm{Bl}_{\mathcal{C}}^{\chi} \colon \mathrm{Bord}_{2+\varepsilon,2,1}^{\chi} \longrightarrow \mathcal{L}\mathrm{ex}_{\Bbbk} \qquad \text{(finite version of } \widehat{\mathbb{C}}\mathrm{at}_{\Bbbk})$$

$$\bigcirc \longmapsto \mathcal{C}$$

$$\longmapsto \left((X,Y,Z) \mapsto \mathrm{Z}_{\mathcal{C}} \left(\begin{array}{c} Z \\ & \end{array} \right) \right)$$

Theorem [H., Runkel]

For C a not necessarily semisimple modular tensor category, the 3d TFT Z_C of [DGGPR22] induces a symmetric monoidal 2-functor:

$$\begin{split} \operatorname{Bl}_{\mathcal{C}}^{\chi} \colon \operatorname{Bord}_{2+\varepsilon,2,1}^{\chi} &\longrightarrow \mathcal{L}\operatorname{ex}_{\Bbbk} \qquad \text{(finite version of } \widehat{\mathbb{C}}\operatorname{at}_{\Bbbk}) \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ &$$

Theorem [H., Runkel]

For C a not necessarily semisimple modular tensor category, the 3d TFT Z_C of [DGGPR22] induces a symmetric monoidal 2-functor:

$$\begin{split} \operatorname{Bl}_{\mathcal{C}}^{\chi} \colon \operatorname{Bord}_{2+\varepsilon,2,1}^{\chi} &\longrightarrow \mathcal{L}\operatorname{ex}_{\Bbbk} \qquad \text{(finite version of } \widehat{\mathbb{C}}\operatorname{at}_{\Bbbk}) \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

Theorem [H., Runkel]

For C a not necessarily semisimple modular tensor category, the 3d TFT Z_C of [DGGPR22] induces a symmetric monoidal 2-functor:

$$\operatorname{Bl}_{\mathcal{C}}^{\chi} \colon \operatorname{Bord}_{2+\varepsilon,2,1}^{\chi} \longrightarrow \mathcal{L}\operatorname{ex}_{\Bbbk} \qquad \text{(finite version of } \widehat{\mathbb{C}}\operatorname{at}_{\Bbbk})$$

$$O \longmapsto \mathcal{C}$$

$$\longmapsto \left((X,Y,Z) \mapsto \operatorname{Z}_{\mathcal{C}} \left(\underbrace{\sum_{X^{*}}^{Z}}_{Y^{*}} \right) \right)$$

$$\vdots$$

$$\vdots$$

Remark: Together with [DGGPR23], this provides a 3d construction of Lyubashenko's modular functor [Lyu95].

Definition

$$\mathrm{Bord}^{\mathrm{oc}}_{2+\varepsilon,2,1}$$

Definition

$$\mathrm{Bord}^{\mathrm{oc}}_{2+\varepsilon,2,1}$$

Definition

$$\operatorname{Bord}_{2+\varepsilon,2,1}^{\operatorname{oc}}$$

Definition

$$\operatorname{Bord}_{2+\varepsilon,2,1}^{\operatorname{oc}}$$

Definition

$$\operatorname{Bord}_{2+\varepsilon,2,1}^{\operatorname{oc}}$$

$$\bigcup$$

$$\vdots$$

Definition/Lemma

There is an open-closed bordism 2-category, and a symmetric monoidal 2-functor:

$$(-): \operatorname{Bord}_{2+\varepsilon,2,1}^{\operatorname{oc}} \longrightarrow \operatorname{Bord}_{2+\varepsilon,2,1}^{\chi}$$

$$\longrightarrow \longmapsto \bigcirc$$

$$\longmapsto \bigcirc$$

$$\longmapsto \longrightarrow$$

$$\vdots$$

Definition/Lemma

There is an open-closed bordism 2-category, and a symmetric monoidal 2-functor:

$$\widehat{(-)} \colon \operatorname{Bord}_{2+\varepsilon,2,1}^{\operatorname{oc}} \longrightarrow \operatorname{Bord}_{2+\varepsilon,2,1}^{\chi}$$

$$\longrightarrow \longmapsto \bigcirc$$

$$\longrightarrow \longmapsto \bigcirc$$

$$\longmapsto \longrightarrow$$

$$\longmapsto \longrightarrow$$

$$\vdots$$

From now on: $\mathrm{Bl}_{\mathcal{C}} := \mathrm{Bl}_{\mathcal{C}}^{\chi} \circ \widehat{(-)}$

Theorem [H., Runkel]

Every surface defect A in the 3d TFT Z_C , satisfying some technical assumptions, induces a braided monoidal 2-natural transformation:

Theorem [H., Runkel]

Every surface defect A in the 3d TFT Z_C , satisfying some technical assumptions, induces a braided monoidal 2-natural transformation:

This amounts to:

Theorem [H., Runkel]

Every surface defect A in the 3d TFT Z_C , satisfying some technical assumptions, induces a braided monoidal 2-natural transformation:

This amounts to:

1. Left exact functors $\operatorname{Cor}_{\Gamma}^{A} \colon \mathcal{C}^{\boxtimes \pi_{0}(\widehat{\Gamma})} \to \operatorname{Vect}_{\Bbbk};$

Theorem [H., Runkel]

Every surface defect A in the 3d TFT Z_C , satisfying some technical assumptions, induces a braided monoidal 2-natural transformation:

This amounts to:

1. Left exact functors $\operatorname{Cor}_{\Gamma}^{A} \colon \mathcal{C}^{\boxtimes \pi_{0}(\widehat{\Gamma})} \to \operatorname{Vect}_{\Bbbk}$, giving the field content because $\operatorname{Cor}_{\Gamma}^{A}(-) \cong \operatorname{Hom}(\mathbb{F}_{\Gamma}, -)$;

Theorem [H., Runkel]

Every surface defect A in the 3d TFT Z_C , satisfying some technical assumptions, induces a braided monoidal 2-natural transformation:

This amounts to:

- 1. Left exact functors $\operatorname{Cor}_{\Gamma}^{A} \colon \mathcal{C}^{\boxtimes \pi_{0}(\widehat{\Gamma})} \to \operatorname{Vect}_{\mathbb{k}},$ giving the field content because $\operatorname{Cor}_{\Gamma}^{A}(-) \cong \operatorname{Hom}(\mathbb{F}_{\Gamma}, -);$
- 2. Natural transformations $\operatorname{Cor}_{\Sigma}^{A} \colon \operatorname{Cor}_{\Gamma'}^{A} \otimes_{\mathbb{k}} \operatorname{Cor}_{\Gamma}^{A\dagger} \Rightarrow \operatorname{Bl}_{\mathcal{C}}(\Sigma);$

Full CFTs from surface defects

Theorem [H., Runkel]

Every surface defect A in the 3d TFT Z_C , satisfying some technical assumptions, induces a braided monoidal 2-natural transformation:

This amounts to:

- 1. Left exact functors $\operatorname{Cor}_{\Gamma}^{A} \colon \mathcal{C}^{\boxtimes \pi_{0}(\widehat{\Gamma})} \to \operatorname{Vect}_{\mathbb{k}},$ giving the field content because $\operatorname{Cor}_{\Gamma}^{A}(-) \cong \operatorname{Hom}(\mathbb{F}_{\Gamma}, -);$
- 2. Natural transformations $\operatorname{Cor}_{\Sigma}^{A} \colon \operatorname{Cor}_{\Gamma'}^{A} \otimes_{\Bbbk} \operatorname{Cor}_{\Gamma}^{A\dagger} \Rightarrow \operatorname{Bl}_{\mathcal{C}}(\Sigma)$, giving the correlators because $\operatorname{Nat}(\operatorname{Cor}_{\Gamma'}^{A} \otimes_{\Bbbk} \operatorname{Cor}_{\Gamma}^{A\dagger}, \operatorname{Bl}_{\mathcal{C}}(\Sigma)) \cong \operatorname{Bl}_{\mathcal{C}}^{\chi}(\widehat{\Sigma}; \mathbb{F}_{\Gamma}, \mathbb{F}_{\Gamma'});$

Full CFTs from surface defects

Theorem [H., Runkel]

Every surface defect A in the 3d TFT Z_C , satisfying some technical assumptions, induces a braided monoidal 2-natural transformation:

This amounts to:

- 1. Left exact functors $\operatorname{Cor}_{\Gamma}^{A} \colon \mathcal{C}^{\boxtimes \pi_{0}(\widehat{\Gamma})} \to \operatorname{Vect}_{\mathbb{k}};$
- 2. Natural transformations $\operatorname{Cor}_{\Sigma}^{A} \colon \operatorname{Cor}_{\Gamma'}^{A} \otimes_{\Bbbk} \operatorname{Cor}_{\Gamma}^{A \dagger} \Rightarrow \operatorname{Bl}_{\mathcal{C}}(\Sigma);$
- + compatibility conditions for gluing surfaces and with mapping class group actions;

[FRS02]: For Σ a 2-manifold get $\operatorname{Cor}_{\Sigma}^A$ via the "connecting bordism":

$$M_{\varSigma} := \varSigma \times [-1,1]/\sim \quad \text{with} \quad (p,t) \sim (p,-t) \quad \text{for} \quad p \in \partial^{\text{ph}} \varSigma$$
 with A-labelled surface defect \varSigma at $\varSigma \times \{0\}$.

For S a 1- or 2-manifold get Cor_S^A via the "connecting manifold":

$$M_S:=S\times [-1,1]/\sim \quad \text{with} \quad (p,t)\sim (p,-t) \quad \text{for} \quad p\in \partial^{\text{ph}}S$$
 with A-labelled defect S at $S\times \{0\}$:

For S a 1- or 2-manifold get Cor_S^A via the "connecting manifold":

$$M_S := S \times [-1, 1] / \sim \text{ with } (p, t) \sim (p, -t) \text{ for } p \in \partial^{\text{ph}} S$$

with A-labelled defect S at $S \times \{0\}$:

(Note:
$$\partial M_{\Gamma} = \widehat{\Gamma}$$
)

$$\Gamma \leadsto M_{\Gamma}$$

For S a 1- or 2-manifold get Cor_S^A via the "connecting manifold":

$$M_S := S \times [-1, 1] / \sim \text{ with } (p, t) \sim (p, -t) \text{ for } p \in \partial^{\text{ph}} S$$

with A-labelled defect S at $S \times \{0\}$:

(Note:
$$\partial M_{\Gamma} = \widehat{\Gamma}$$
)

$$\Gamma \leadsto M_{\Gamma}$$

For S a 1- or 2-manifold get Cor_S^A via the "connecting manifold":

$$M_S := S \times [-1,1]/\sim \quad \text{with} \quad (p,t) \sim (p,-t) \quad \text{for} \quad p \in \partial^{\text{ph}} S$$
 with A -labelled defect S at $S \times \{0\}$:

1-morphism components:

(Note: $\partial M_{\Gamma} = \widehat{\Gamma}$)

$$\Gamma \leadsto M_{\Gamma}$$

For S a 1- or 2-manifold get Cor_S^A via the "connecting manifold":

 $M_S := S \times [-1,1]/\sim \quad \text{with} \quad (p,t) \sim (p,-t) \quad \text{for} \quad p \in \partial^{\text{ph}} S$ with A-labelled defect S at $S \times \{0\}$:

1-morphism components:

 $\Gamma \leadsto M_{\Gamma}$

$$(\text{Note: } \partial M_{\Gamma} = \widehat{\Gamma})$$

$$\longrightarrow \operatorname{Cor}_{\Gamma}^{A}(-) \colon \mathcal{C}^{\boxtimes \pi_{0}(\widehat{\Gamma})} \to \operatorname{Vect}_{\Bbbk}$$

For S a 1- or 2-manifold get Cor_S^A via the "connecting manifold":

 $M_S := S \times [-1,1]/\sim \text{ with } (p,t) \sim (p,-t) \text{ for } p \in \partial^{\mathrm{ph}} S$ with A-labelled defect S at $S \times \{0\}$:

$$\Gamma \leadsto M_{\Gamma} \qquad \longrightarrow \operatorname{Cor}_{\Gamma}^{A}(-) \colon \mathcal{C}^{\boxtimes \pi_{0}(\widehat{\Gamma})} \to \operatorname{Vect}_{\Bbbk}$$

$$\longrightarrow \left(X \mapsto \operatorname{Z}_{\mathcal{C}}\left(\overbrace{Y} \right) \right)$$

$$\longrightarrow \left((Y, \overline{Y}) \mapsto \operatorname{Z}_{\mathcal{C}}\left(\overbrace{Y} \right) \right)$$

Example
$$\Sigma: \bigcirc \longrightarrow$$

$$\operatorname{Cor}_{I}^{A}(X) \otimes_{\Bbbk} \operatorname{Cor}_{S^{1}}^{A\dagger}(Y \boxtimes \overline{Y}) \longrightarrow \operatorname{Bl}_{\mathcal{C}}^{\chi}(\widehat{\Sigma})(Y \boxtimes \overline{Y}, X)$$

2-morphism components:

7

2-morphism components:

7

Example: Transparent surface defect $A=\mathbb{1}$:

(b.c.'s and top. defects are labelled with objects in $\mathcal{C})$

Example: Transparent surface defect A = 1:

(b.c.'s and top. defects are labelled with objects in $\mathcal{C})$

• Boundary fields: $\mathbb{F}_{I_{m,n}} \cong m^* \otimes n \in \mathcal{C} \simeq \text{Rep}(\mathcal{V})$

Example: Transparent surface defect A = 1:

(b.c.'s and top. defects are labelled with objects in $\ensuremath{\mathcal{C}})$

- Boundary fields: $\mathbb{F}_{I_{m,n}} \cong m^* \otimes n \in \mathcal{C} \simeq \text{Rep}(\mathcal{V})$
- Bulk fields: $\mathbb{F}_{S^1} \cong \int^{X \in \mathcal{C}} X^* \boxtimes X \in \mathcal{C} \boxtimes \overline{\mathcal{C}} \simeq \operatorname{Rep}(\mathcal{V} \otimes \overline{\mathcal{V}})$

Example: Transparent surface defect A = 1:

(b.c.'s and top. defects are labelled with objects in $\ensuremath{\mathcal{C}})$

- Boundary fields: $\mathbb{F}_{I_{m,n}} \cong m^* \otimes n \in \mathcal{C} \simeq \text{Rep}(\mathcal{V})$
- Bulk fields: $\mathbb{F}_{S^1} \cong \int^{X \in \mathcal{C}} X^* \boxtimes X \in \mathcal{C} \boxtimes \overline{\mathcal{C}} \simeq \operatorname{Rep}(\mathcal{V} \otimes \overline{\mathcal{V}})$
- \bullet Boundary states \leftrightarrow Characters

8

Example: Transparent surface defect A = 1:

(b.c.'s and top. defects are labelled with objects in $\mathcal{C})$

- Boundary fields: $\mathbb{F}_{I_{m,n}} \cong m^* \otimes n \in \mathcal{C} \simeq \text{Rep}(\mathcal{V})$
- Bulk fields: $\mathbb{F}_{S^1} \cong \int^{X \in \mathcal{C}} X^* \boxtimes X \in \mathcal{C} \boxtimes \overline{\mathcal{C}} \simeq \operatorname{Rep}(\mathcal{V} \otimes \overline{\mathcal{V}})$
- $\bullet \ \text{Boundary states} \leftrightarrow \text{Characters}$

This agrees with the results of [FGSS18]!

Example: Transparent surface defect A = 1:

(b.c.'s and top. defects are labelled with objects in \mathcal{C})

- Boundary fields: $\mathbb{F}_{I_{m,n}} \cong m^* \otimes n \in \mathcal{C} \simeq \text{Rep}(\mathcal{V})$
- Bulk fields: $\mathbb{F}_{S^1} \cong \int^{X \in \mathcal{C}} X^* \boxtimes X \in \mathcal{C} \boxtimes \overline{\mathcal{C}} \simeq \operatorname{Rep}(\mathcal{V} \otimes \overline{\mathcal{V}})$
- Boundary states \leftrightarrow Characters
- ullet Algebra of defect operators $\cong \operatorname{Gr}_{\Bbbk}(\mathcal{C})$

This agrees with the results of [FGSS18]!

• Calculations for non-trivial surface defects obtained via orbifolding as in [FRS02; CRS19];

- Calculations for non-trivial surface defects obtained via orbifolding as in [FRS02; CRS19];
- Explicit calculations for C = SF or $C = \text{Rep}(u_q(\mathfrak{sl}_2));$

- Calculations for non-trivial surface defects obtained via orbifolding as in [FRS02; CRS19];
- Explicit calculations for $C = \mathcal{SF}$ or $C = \text{Rep}(u_q(\mathfrak{sl}_2));$
- Construction of more general surface defects for $Z_{\mathcal{C}}$ using pivotal module categories [FS21];

- Calculations for non-trivial surface defects obtained via orbifolding as in [FRS02; CRS19];
- Explicit calculations for $C = \mathcal{SF}$ or $C = \text{Rep}(u_q(\mathfrak{sl}_2));$
- Construction of more general surface defects for $Z_{\mathcal{C}}$ using pivotal module categories [FS21];
- Classification of full CFTs;

- Calculations for non-trivial surface defects obtained via orbifolding as in [FRS02; CRS19];
- Explicit calculations for $C = \mathcal{SF}$ or $C = \text{Rep}(u_q(\mathfrak{sl}_2));$
- Construction of more general surface defects for $Z_{\mathcal{C}}$ using pivotal module categories [FS21];
- Classification of full CFTs;
- Relation to other approaches, in particular the string net [FSY23] and the operadic one [Woi25];

- Calculations for non-trivial surface defects obtained via orbifolding as in [FRS02; CRS19];
- Explicit calculations for $C = \mathcal{SF}$ or $C = \text{Rep}(u_q(\mathfrak{sl}_2));$
- Construction of more general surface defects for Z_C using pivotal module categories [FS21];
- Classification of full CFTs;
- Relation to other approaches, in particular the string net [FSY23] and the operadic one [Woi25];
- Relation to skein theory with defects [BJ25];

- Calculations for non-trivial surface defects obtained via orbifolding as in [FRS02; CRS19];
- Explicit calculations for $C = \mathcal{SF}$ or $C = \text{Rep}(u_q(\mathfrak{sl}_2));$
- Construction of more general surface defects for Z_C using pivotal module categories [FS21];
- Classification of full CFTs;
- Relation to other approaches, in particular the string net [FSY23] and the operadic one [Woi25];
- Relation to skein theory with defects [BJ25];
- Relation to non-invertible symmetries in non-semisimple lattice models [DHY25];

References

[BJ25]	Jennifer Brown and David Jordan. <i>Parabolic skein modules</i> . 2025. arXiv: 2505.14836 [math.QA]. urL: https://arxiv.org/abs/2505.14836.
[GDG46]	Nila Canavarilla Inga Dunkal and Chagan Calauman

[CRS19] Nils Carqueville, Ingo Runkel, and Gregor Schaumann. "Orbifolds of n-dimensional defect TQFTs". In:

Geometry & Topology 23.2 (2019), 781–864. arXiv:
1705.06085 [math.QA].

[DGGPR22] Marco De Renzi, Azat M. Gainutdinov, Nathan Geer, Bertrand Patureau-Mirand, and Ingo Runkel.

"3-dimensional TQFTs from non-semisimple modular categories". In: Selecta Mathematica 28.2 (2022), 42. arXiv: 1912.02063 [math.GT].

[DGGPR23] Marco De Renzi, Azat M. Gainutdinov, Nathan Geer, Bertrand Patureau-Mirand, and Ingo Runkel. "Mapping class group representations from non-semisimple TQFTs". In: Communications in Contemporary Mathematics 25.01 (2023), 2150091, arXiv: 2010.14852 [math.GT].

	non-semisimple non-invertible symmetry". In: <i>Phys. Rev. B</i> 112.8 (2025), 085135. arXiv: 2412.19635 [cond-mat.str-el].
[FGSS18]	Jürgen Fuchs, Terry Gannon, Gregor Schaumann, and Christoph Schweigert. "The logarithmic Cardy case: boundary states and annuli". In: Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy
	Physics. Quantum Field Theory and Statistical Systems 930 (2018), 287–327. arXiv: 1712.01922 [math.QA].
[FRS02]	Jürgen Fuchs, Ingo Runkel, and Christoph Schweigert. "TFT construction of RCFT correlators I:

[DHY25]

Clement Delcamp, Edmund Heng, and Matthew Yu. "A

partition functions". In: Nuclear Physics B 646.3 (2002), 353–497. arXiv: hep-th/0204148 [hep-th].

[FS21] Jürgen Fuchs and Christoph Schweigert. "Bulk from boundary in finite CFT by means of pivotal module categories". In: Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems 967 (2021).

arXiv: 2012.10159 [hep-th].

	Vol. 45. SpringerBriefs in Mathematical Physics. Springer Nature, 2023. arXiv: 2112.12708 [math.QA].
[Lyu95]	Volodymyr V. Lyubashenko. "Invariants of 3-manifolds and projective representations of
	mapping class groups via quantum groups at roots of unity". In: Communications in Mathematical Physics 172
	(1995), 467–516. arXiv: hep-th/9405167 [hep-th].
[RT91]	Nicolai Reshetikhin and Vladimir G. Turaev. "Invariants

[FSY23]

Jürgen Fuchs, Christoph Schweigert, and Yang Yang.

String-Net Construction of RCFT Correlators.

ts of 3-manifolds via link polynomials and quantum groups". In: Inventiones Mathematicae 103.3 (1991), 547–597.

Lukas Woike. The Construction of Correlators in [Woi25]

Finite Rigid Logarithmic Conformal Field Theory. 2025. arXiv: 2507.22841 [math.QA].

Chiral modular functors from non-semisimple TFTs

Our main technical contribution to this theorem is the following result on the behaviour of $\mathrm{Bl}^\chi_\mathcal{C}$ under gluing:

Proposition

Let Σ be a (possibly connected) surface with at least one incoming and outgoing boundary component, and let $\Sigma_{\rm gl}$ be the surface obtained from gluing these boundaries. Then there is a natural isomorphism

$$\mathrm{Bl}^{\chi}_{\mathcal{C}}(\Sigma_{\mathrm{gl}}) \cong \oint^{X \in \mathcal{C}} \mathrm{Bl}^{\chi}_{\mathcal{C}}(\Sigma)(X,X).$$

induced by a 3-dimensional bordism.

Chiral modular functors from non-semisimple TFTs

Locally:

