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Introduction

In recent years a lot of effort was spent on understanding and studying various notions of
generalised symmetries including higher-form and non-invertible symmetries. These
new kinds of symmetries show up in a variety of systems, ranging from the Ising model,
over topological phases of matter, to string theory.
generalised symmetries in QFTs no longer fit into the conventional mathematical framework
in terms of groups, instead the correct framework is provided by (higher) category
theory and Topological Field Theories (TFTs).

Symmetries and topological defects

A defect in a QFT is a lower-dimensional region of spacetime which behaves differently
then its surroundings. The resulting theory is “defective” in the sense that two regions of
spacetime disjoint by a defect could have vastly different physical properties. A defect is
called topological if its precise location does not matter.
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Figure 1. Theory on a “world sheet” S with 1-dimensional defects and field insertion Ψ.

Topological defects generalise the notion of an ordinary symmetry. To see this take
an element g of the symmetry group G. We can interpret g as a topological defect of
codimension 1 across which the value of field operators jumps by the action of g:
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Figure 2. Moving a field Ψ past the defect corresponding to g changes the field by the action of g to g.Ψ.

More precisely, the topological defect corresponds to an operator Ug acting on the Hilbert
space H of our theory. The family of operators (Ug)g∈G together with the Hilbert space
H form a representation of the abstract symmetry group G. Analogously one should
think of the topological defects in a given QFT as a representation of the actual symmetry
structure.

Symmetry TFTs

Going from a given representation to the abstract symmetry group gives us a deeper under-
standing of the symmetry itself, beyond its specific representation. A symmetry TFT
(symTFT) is the abstract entity governing all topological defects of the QFT we are
interested in. The idea is to encode all topological defects of a d-dimensional QFT
T in a (d + 1)-dimensional TFT Z with a topological “Dirichlet” boundary condition
B. The symTFT Z acts on the QFT T via dimensional reduction along an interval:
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Figure 3. Action of a symmetry TFT Z on the theory T via the boundary condition B.

TFTs themselves are studied in pure mathematics using (higher) category theory.

2d CFTs and 3d TFTs

These ideas allow us to rigorously study 2-dimensional Conformal Field Theories. To this
end a 2d CFT will mean the following mathematical objects for us:

A vertex operator algebra (VOA) V (formalizing the algebra of chiral operators)
A modular functor BlV (assignment of conformal block spaces, compatible with
cutting/gluing of surfaces)
The field content (Specific VOA modules)
Correlators (elements in the block spaces satisfying certain conditions)

In the rational/semisimple setting one can reconstruct the whole CFT from the VOA
V and one extra datum via the FRS-construction [2]. Let us illustrate this for the one point
correlator 〈Ψ〉S on the world sheet S in Fig. 1.
For any rational VOA V there is a 3d TFT ZV with Rep(V) as its category of line operators.
The state spaces ZV(Σ) are conjecturally isomorphic to the chiral conformal blocks
BlV(Σ).

Under this conjecture we can obtain 〈Ψ〉S by the following procedure:
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Figure 4. Cylinder over the world sheet S.

Consider the (punctured) surface Σ
underlying S. Next take the cylinder
Σ × [−1, 1] and embed S as a
surface defect at Σ × {0} as in Fig. 4.
Applying ZV to the cylinder
produces a vector in the state
space ZV(Σ t −Σ).
It can be shown that this vector
automatically satisfies the conditions of
a correlator! In particular we can explicitly
compute correlators by working
with diagrams in Rep(V)!
To arrive at the symTFT picture, fold the
cylinder in half and note that the surface
defect becomes a boundary condition
for the doubled TFT ZV ⊗ ZV.

Rationality is a strong finiteness assumption, can we weaken this to study more classes of
CFTs? In [1] a (partially defined) 3d TFT with non-semisimple category of line
operators was constructed, can this be used as a non-semisimple symmetry TFT
for finite logarithmic CFTs?

Why are non-semisimple theories interesting?

From a physics perspective:
Applications in statistical physics, e.g. critical dense polymers.
Wess-Zumino-Witten models with supergroup target are often non-semisimple.
Twists of supersymmetric QFTs are usually non-semisimple, even derived.

From a mathematics perspective:
Most 2d TFTs are non-semisimple.
Can we understand other non-semisimple CFT constructions from the 3d perspective?
Stronger topological invariants.
Topological interpretation of algebraic structures.
Step towards derived TFTs.

Main result

Theorem[3]
For any modular tensor category C, the 3d TFT of [1] with C as category of line
operators induces a chiral modular functor

BlχC : Bordχ
2+ε,2,1 → ProfLex

k
.

Bordχ
2+ε,2,1 ProfLex

k
CFT interpretation

finite linear category C Representation category of VOA

HomC(U ⊗ V, W ) Space of three point correlators on sphere

HomC(1, L) Modular S-transformation of VOA characters

S χi(−1
τ ) =

∑
j Sijχj(τ )+…

HomC(1, L)

Future work

In order to fully exploit the FRS construction we need non-semisimple TFTs which include
surface defects.

What is the right algebraic input? ⇒ pivotal module categories
How do we construct the TFTs? ⇒ internal state sum/gauge line defects

In contrast to the semisimple setting, we expect not all surface defects to come from the
gauging of line defects. How can we get the others?
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